合奏学习在机器学习方面取得了成功,比其他学习方法具有重大优势。袋装是一种突出的合奏学习方法,它创建了被称为袋子的数据子组,该数据被单独的机器学习方法(例如决策树)培训。随机森林是学习过程中具有其他功能的袋装的重要例子。 \ textColor {black} {当单个学习者具有较高的偏见时,包装的限制是汇总预测中的高偏置(模型不足)。}进化算法已突出用于优化问题,并且也用于机器学习。进化算法是无梯度的方法,具有多种候选解决方案,可维持创建新解决方案的多样性。在传统的包装合奏学习中,制作了一次袋子,而在培训示例方面,内容是在学习过程中固定的。在我们的论文中,我们提出了进化装袋的合奏学习,我们利用进化算法来发展袋子的内容,以通过迭代袋中提供多样性来增强合奏。结果表明,在某些约束下,我们的进化合奏装袋方法优于几个基准数据集的常规合奏方法(包装和随机森林)。进化装袋可以固有地维持一套不同的行李,而无需牺牲任何数据。
translated by 谷歌翻译
我们解决了在均质半透明材料中建模光散射并估算其散射参数的问题。散射相函数是影响散射辐射分布的此类参数之一。它是在实践中建模的最复杂,最具挑战性的参数,通常使用经验相位函数。经验相函数(例如Henyey-Greenstein(HG)相位函数)通常会呈现,并限于特定的散射材料范围。这种限制引起了人们对目标材料通常未知的反向渲染问题的关注。在这种情况下,首选更通用的相位函数。尽管使用诸如Legendre多项式\ cite {Fowler1983}之类的基础中存在这种通用相位函数,但此相函数的逆渲染并不直接。这是因为基础多项式在某个地方可能是负面的,而相位函数不能。这项研究提出了一种新型的通用相位功能,可以避免此问题,并使用此阶段函数进行逆渲染应用。通过以MIE散射理论建模的广泛的材料对所提出的相函数进行了积极评估。通过模拟和现实世界实验评估了带有建议的相函数的散射参数估计。
translated by 谷歌翻译
传感器融合可以显着提高许多计算机视觉任务的性能。但是,传统的融合方法要么不是数据驱动的,也不能利用先验知识,也不能在给定数据集中找到规律性,或者它们仅限于单个应用程序。我们通过呈现一种新型深层分层变异自动编码器来克服这一缺点,称为FusionVae,可以作为许多融合任务的基础。我们的方法能够生成以多个嘈杂,遮挡或仅部分可见的输入图像来调节的各种图像样本。我们得出并优化了融合的条件对数似然的变化下限。为了彻底评估模型的融合功能,我们根据流行的计算机视觉数据集创建了三个新颖的图像融合数据集。在我们的实验中,我们表明FusionVae学习了与融合任务相关的汇总信息的表示。结果表明,我们的方法表现明显优于传统方法。此外,我们介绍了不同设计选择的优势和缺点。
translated by 谷歌翻译
视频时间基础(VTG)的目标是根据自然语言(NL)描述在未修剪视频中定位时间矩。由于现实世界的应用程序提供了永无止境的视频流,因此它提出了对长形视频的时间基础的需求,这导致了两个主要挑战:(1)长视频长度使得很难处理整个视频而不减少样本速率并导致高计算负担; (2)随着候选时间的增加数量,准确的多模式对准更具挑战性。为了应对这些挑战,我们提出了一个有效的以窗户为中心的粗略对齐框架,它可以灵活地处理具有较高推理速度的长格式视频输入,并通过我们的新颖的Choce-Fine Muly-Fine增强了时间基础模态对齐框架。具体来说,我们通过滑动窗口方法将长视频将长视频切成候选窗口。 Cone(1)以窗户为中心,通过对比度学习和通过对NL查询相关的候选窗口进行过滤来学习窗口间的(粗粒)语义差异,并且(2)执行内部(罚款) - 使用强大的对比视力文本预训练模型的强大多模式对齐能力对候选力矩进行排名。长期视频的两个大规模VTG基准测试的广泛实验始终显示出可观的性能增长(MAD的3.13%至6.87%,从10.46%到EGO4D-NLQ上的10.46%至13.46%),并且Cone在两个数据集上都可以达到SOTA结果。分析揭示了组件的有效性和长期视频接地的效率较高,因为我们的系统在EGO4D-NLQ上提高了2倍的推理速度,而在MAD上提高了15倍的速度,同时保持了锥体的SOTA性能。
translated by 谷歌翻译
如今,随着发现的OSS漏洞的数量,开源软件(OSS)漏洞管理流程随着时间的流逝而增加。监视漏洞固定提交是防止脆弱性开发的标准过程的一部分。但是,由于可能有大量的审查,手动检测漏洞固定的犯罪是耗时的。最近,已经提出了许多技术来自动检测使用机器学习的漏洞固定提交。这些解决方案要么:(1)不使用深度学习,或(2)仅对有限的信息来源使用深度学习。本文提出了藤条,该工具利用了更丰富的信息来源,包括提交消息,代码更改和针对漏洞固定的提交分类的报告。我们的实验结果表明,在F1得分方面,沃尔维尔剂的表现优于最先进的基线。 Vulcurator工具可在https://github.com/ntgiang71096/vfdetector和https://zenodo.org/record/7034132#.yw3mn-xbzdi上公开获得。
translated by 谷歌翻译
构建静态呼叫图需要在健全和精度之间进行权衡。不幸的是,用于构建呼叫图的程序分析技术通常不精确。为了解决这个问题,研究人员最近提出了通过机器学习为静态分析构建的后处理呼叫图所授权的呼叫图。机器学习模型的构建是为了通过在随机森林分类器中提取结构特征来捕获呼叫图中的信息。然后,它消除了预测为误报的边缘。尽管机器学习模型显示了改进,但它们仍然受到限制,因为它们不考虑源代码语义,因此通常无法有效地区分真实和误报。在本文中,我们提出了一种新颖的呼叫图修剪技术AutoRoprouner,用于通过统计语义和结构分析消除呼叫图中的假阳性。给定一个由传统静态分析工具构建的呼叫图,AutoProuner采用基于变压器的方法来捕获呼叫者与呼叫图中每个边缘相关的呼叫者和Callee函数之间的语义关系。为此,AutoProuner微型调节模型是在大型语料库上预先训练的代码模型,以根据其语义的描述表示源代码。接下来,该模型用于从与呼叫图中的每个边缘相关的功能中提取语义特征。 AutoProuner使用这些语义功能以及从呼叫图提取的结构特征通过馈送前向神经网络分类。我们在现实世界程序的基准数据集上进行的经验评估表明,AutoProuner的表现优于最先进的基线,从而改善了F量级,在识别静态呼叫图中识别错误阳性边缘方面,高达13%。
translated by 谷歌翻译
在接下来的几十年中,人工通用情报(AGI)可能会超过人类在各种重要任务下的能力。该报告为为什么如果没有实质性采取行动来阻止它,AGI可能会利用他们的智能来追求目标,而这些目标是从人类的角度出发,可能会带来潜在的灾难性后果。该报告旨在涵盖激励对对齐问题的关注的关键论点,以尽可能简洁,具体和技术上的方式进行对齐问题。我认为,现实的培训过程可能会导致AGIS中未对准的目标,尤其是因为通过强化学习训练的神经网络将学会计划实现一系列目标;通过欺骗性追求未对准的目标获得更多奖励;并以破坏服从的方式概括。就像Cotra(2022)的较早报告中一样,我在参考说明性AGI培训过程中解释了我的主张,然后概述了解决问题的不同方面的可能的研究方向。
translated by 谷歌翻译
在驾驶的背景下进行警觉性监控可改善安全性并挽救生命。基于计算机视觉的警报监视是一个活跃的研究领域。但是,存在警觉性监控的算法和数据集主要针对年轻人(18-50岁)。我们提出了一个针对老年人进行车辆警报监控的系统。通过设计研究,我们确定了适合在5级车辆中独立旅行的老年人的变量和参数。我们实施了一个原型旅行者监测系统,并评估了十个老年人(70岁及以上)的警报检测算法。我们以适合初学者或从业者的详细级别报告系统设计和实施。我们的研究表明,数据集的开发是开发针对老年人的警觉性监测系统的首要挑战。这项研究是迄今为止研究不足的人群中的第一项研究,并通过参与方法对未来的算法开发和系统设计具有影响。
translated by 谷歌翻译
表示技术的快速发展和大规模医学成像数据的可用性必须在3D医学图像分析中快速增加机器学习的使用。特别是,深度卷积神经网络(D-CNN)是关键参与者,并被医学成像界采用,以协助临床医生和医学专家进行疾病诊断。然而,培训深层神经网络,例如在高分辨率3D体积的计算机断层扫描(CT)扫描中进行诊断任务的D-CNN带来了强大的计算挑战。这提出了开发基于深度学习的方法,这些方法在2D图像中具有强大的学习表示形式,而是3D扫描。在本文中,我们提出了一种新的策略,以根据沿轴的相邻切片的描述来训练CT扫描上的\ emph {slice level}分类器。特别是,每一个都是通过卷积神经网络(CNN)提取的。该方法适用于具有每片标签的CT数据集,例如RSNA颅内出血(ICH)数据集,该数据集旨在预测ICH的存在并将其分类为5个不同的子类型。我们在RSNA ICH挑战的最佳4 \%最佳解决方案中获得了单个模型,其中允许模型集成。实验还表明,所提出的方法显着优于CQ500上的基线模型。所提出的方法是一般的,可以应用于其他3D医学诊断任务,例如MRI成像。为了鼓励该领域的新进步,我们将在接受论文后制定我们的代码和预培训模型。
translated by 谷歌翻译
在许多高风险应用中,人工智能(AI)的预测越来越重要,甚至是必要的,而人类是最终的决策者。在这项工作中,我们提出了两种自我解剖图像分类器的新型架构,这些架构首先解释,然后通过利用查询图像和示例之间的视觉对应关系来预测(与事后解释)。我们的模型始终在分布(OOD)数据集上始终改进(提高1-4分),同时在分布测试中略差(比Resnet-50)和$ k $ near的邻居分类器更差(1至2分)。 (KNN)。通过大规模的人类对成像网和幼崽的研究,我们基于对应的解释对用户的解释比KNN解释更有用。我们的解释可帮助用户更准确地拒绝AI的错误决策,而不是所有其他测试方法。有趣的是,我们首次表明,在ImageNet和Cub图像分类任务中,有可能实现互补的人类团队的准确性(即比Ai-Olone或单词更高)。
translated by 谷歌翻译